Fig. 1

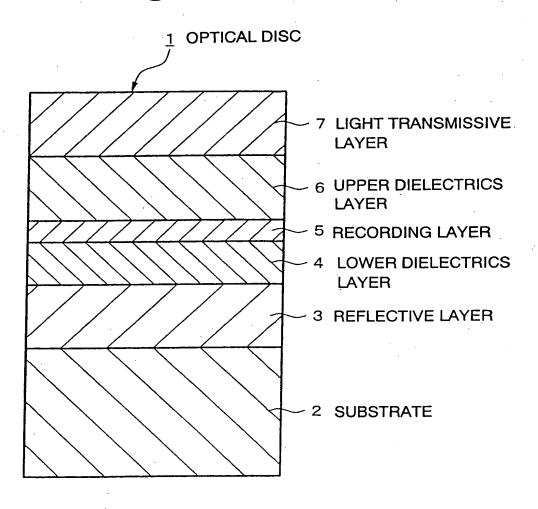


Fig. 2



Fig. 3

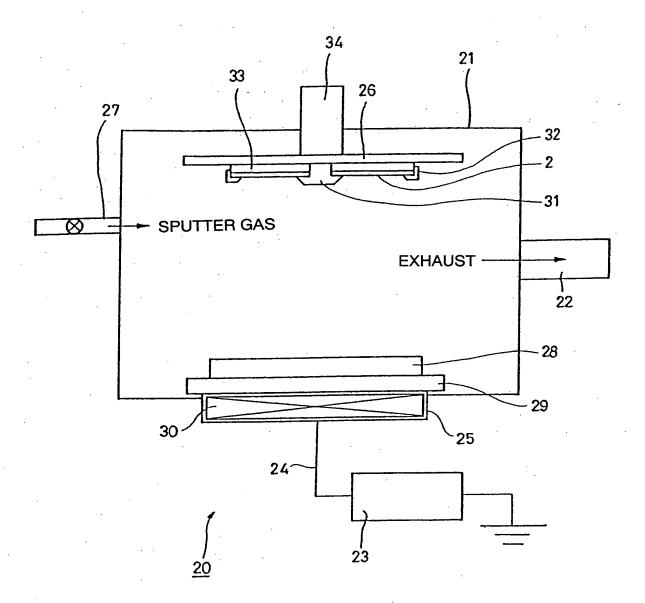


Fig. 4A

Fig. 4B

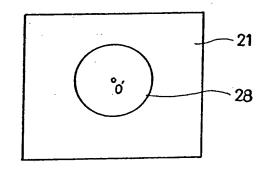
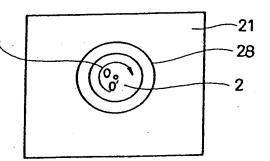
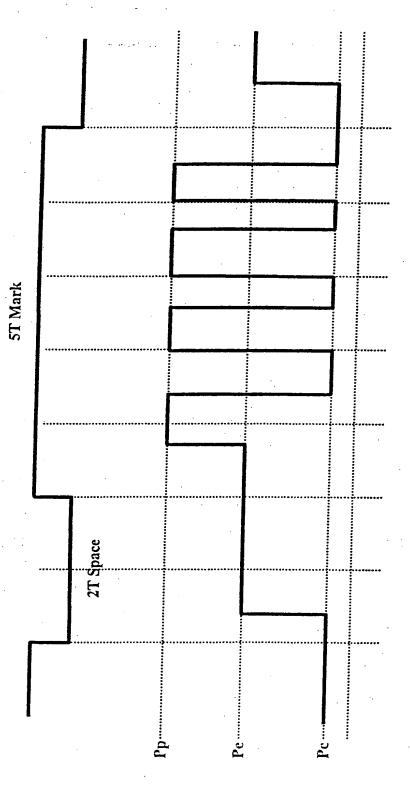
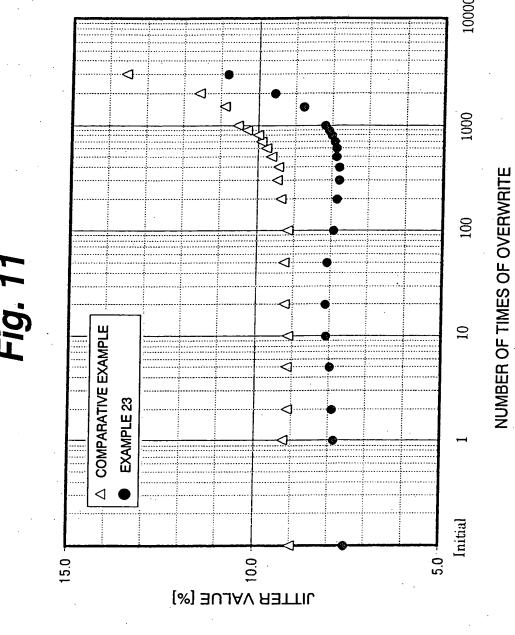



Fig. 4C

٠. ٧	п	ŋ	n n	n :	n i	n	n	n :	n (n ;	n.	n ;		n (n	n	n (n	n (n ('n		n	n	n (
COMPOSITION OF REFLECTIVE FILM	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ago.4at%Ndo.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ago.4at%Ndo.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ago.4at%Ndo.6at%Cu	Ago.4at%Ndo.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ago.4at%Ndo.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.4at%Nd0.6at%Cu	Ag0.7at%Nd0.9at%Cu						
SECOND UPPER DIELECTRICS LAYER [nm]	4.0	4 0	40	4.0	4.0	4 0	4 0	4.0	4 0	4 0	4.0	4 0	4 0	4 0	4.0	4 0	4 0	4 0	3.0	36	46	20	2.0	4 0	4 0
FIRST UPPER DIELECTRICS LAYER [nm]	8	∞	œ	8	8	80	∞	8	8	∞	8	8	œ	80	8	4	10	1.2	80	80	8	8	0	8	80
RECORDING LAYER [nm]	10	10	10	1.0	1.0	10	10	1.0	10	10	1.0	9	80	16	18	1.0	10	1.0	1.0	1.0	1.0	1.0	1 0	1.0	1.0
FIRST LOWER DIELECTRICS LAYER [nm]	9	9	9	6	9	9	9	9	4.	.10	1.2	9	9	9	9	9	9	. 9	9	9	9	9	0	9	9
SECOND LOWER DIELECTRICS LAYER [nm]	∞	∞	∞	∞	4	∞	14	18	∞	∞	8	80	∞ .	œ	8	∞	∞	8	80	∞	8	8	1 8	&	8
REFLECTIVE LAYER [nm]	0 9	8 0	120	140	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	EXAMPLE 1	EXAMPLE 2	EXAMPLE 3	EXAMPLE 4	EXAMPLE 5	EXAMPLE 6	EXAMPLE 7	EXAMPLE 8	EXAMPLE 9	EXAMPLE 10	EXAMPLE 11	EXAMPLE 12	EXAMPLE 13	EXAMPLE 14	EXAMPLE 15	EXAMPLE 16	EXAMPLE 17	EXAMPLE 18	EXAMPLE 19	EXAMPLE 20	EXAMPLE 21	EXAMPLE 22	COMPARATIVE EXAMPLE	EXAMPLE 23	EXAMPLE 24

	THE PARTY OF PERTY	SECOND LOWER	FIRST LOWER		FIRST UPPER	SECOND UPPER	
	KEFLECTIVE	DIELECTRICS	DIELECTRICS	RECORDING I AND []	DIELECTRICS	DIELECTRICS	COMPOSITION OF
	mul wa ten	LAYER [nm]	LAYER [nm]	LAYEK (nm)	LAYER [nm]	LAYER [nm]	KEFLECTIVE FILM
EXAMPLE 25	100	1.0	5	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 26	100	10	2	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 27	100	10	5	1.2	9	4 2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 28	100	10	5	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 29	100	10	2	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 30	100	1.0	5	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 31	100	1.0	2	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 32	100	10	5	1.2	9	4 2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 33	100	10	2	1.2	9	4.2	Ag0.4at%Nd0.6at%Cu
EXAMPLE 34	100	1.0	5	1.2	6	4.2	Ago.4at%Ndo.6at%Cu
EXAMPLE 35	100	∞	9	1 0	8	4.0	Ag0.4at%Nd0.6at%Cu
EXAMPLE 36	100	· ∞	9	1 0	80	4 0	Ag0.4at%Nd0.6at%Cu
EXAMPLE 37	100	∞	9	1 0	∞	4 0	Ago.4at%Ndo.6at%Cu
EXAMPLE 38	100	8	9	1.0	∞	4 0	Ago.4at%Ndo.6at%Cu
EXAMPLE 39	100	80	9	10	80	4 0	Ag0.4at%Nd0.6at%Cu
EXAMPLE 40	100	8	9	1 0	8	4 0	Ag0.4at%Nd0.6at%Cu
EXAMPLE 41	100	· •	9	10	80	4 0	Ago.4at%Ndo.6at%Cu
EXAMPLE 42	100	&	9	1 0	80	4 0	Ago.4at%Ndo.6at%Cu
EXAMPLE 43	100	. &	. 9	1 0	80	4 0	Ag0.4at%Nd0.6at%Cu
EXAMPLE 44	100	8	9	1 0	80	4 0	Ago.4at%Ndo.6at%Cu


	>-	>-	> -	> 0	200		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V 1	V 7	× 7	REPRODUCTION	CORROSION
	g I	MODULATION	RECORDING	MODULATION	RECORDING	DURABILITY	RESISTANCE
	12%-24%	>0.4	<5. 2mW	>0.4	<6.0 mW	>0.3mW	(80C85%400hr)
EXAMPLE 1	0	0	0	0	0	×	0
EXAMPLE 2	0	0	0	0	0	0	0
EXAMPLE 3	0	0	0	0	0	0	0
EXAMPLE 4	0	0	0	0	0	0	0
EXAMPLE 5	Ö	0	0	0	0	0	×
EXAMPLE 6	0	0	0	0	0	0	0
EXAMPLE 7	0	0	0	0	0	0	.0
EXAMPLE 8	×	0	0	0	0	0	0
EXAMPLE 9	0	0	0	0	0	0	0
EXAMPLE 10	Ó	0	0	0	0	0	0
EXAMPLE 11	×	0	0	0	0	×	0
EXAMPLE 12	0	0	0	0	0	×	0
EXAMPLE 13	0	0	0	0		0	0
EXAMPLE 14	0	0	0	0	0	0	0
EXAMPLE 15	0	0	×	0	0	0	0
EXAMPLE 16	0	0	0	0	0	0	0
EXAMPLE 17	0	0	0	0	0	0	0
EXAMPLE 18	0	0	0	0	0	0	0
EXAMPLE 19	×	0	0	0	0	×	0
EXAMPLE 20	0	0	0	0	0	0	0
EXAMPLE 21	0	0	0	0	0	0	0
EXAMPLE 22	×	0	×	×	×	0	0
COMPARATIVE EXAMPLE	0	0	0	0	0	×	×
EXAMPLE 23		0	0	0	0	0	0
EXAMPLE 24	0	0	0	0	0	0	


	2								· · · ·			
1 ×	JITTER AFTER	210nage < 9 %	0	0	0	0	0	0	×	0	0	0
1×	RECORDING	<5. 2 mW	0	0	0	0	×	×	0	0	0	0
1 ×	JITTER	< 6 %	×	0	0	0	0	0	0	0	0	×
		Sb/Te	3. 2	3. 4	3. 7	4	4.4	4. 7	3.6	3.6	3.6	3.6
		G e [at%]	4	4	4	4	4	4	0	2	∞	10
			EXAMPLE 25	EXAMPLE 26	EXAMPLE 27	EXAMPLE 28	EXAMPLE 29	EXAMPLE 30	EXAMPLE 31	EXAMPLE 32	EXAMPLE 33	EXAMPLE 34

													
2 ×	JITTER AFTER	STORAGE	<12.5%	1	. I	l	1	ı	I	×	0	0	0
2 ×	RECORDING	SENSITIVITY	<6. 0 mW	0	0	0	0	0	×	0	0	0	0
2 ×	IITTYPER	~1.2 5%	0,0	×	×	0	0	0	0	0	0	0	×
1 ×	RECORDING	SENSITIVITY	<6.0mW	0	0	0	0	0	×	0	0	0	0
1 ×	IITYPER	<12 5%	20.71	0	0	0	0	0	×	0	0	0	0
			Sb/Te	3. 7	4	4. 2	4.4	4.8	ಲ	4. 2	4. 2	4. 2	4. 2
			G e [at%]	4	4	4	4	4	4	0	2	∞	1 0
				EXAMPLE 35	EXAMPLE 36	EXAMPLE 37	EXAMPLE 38	EXAMPLE 39	EXAMPLE 40	EXAMPLE 41	EXAMPLE 42	EXAMPLE 43	EXAMPLE 44

80C200hr

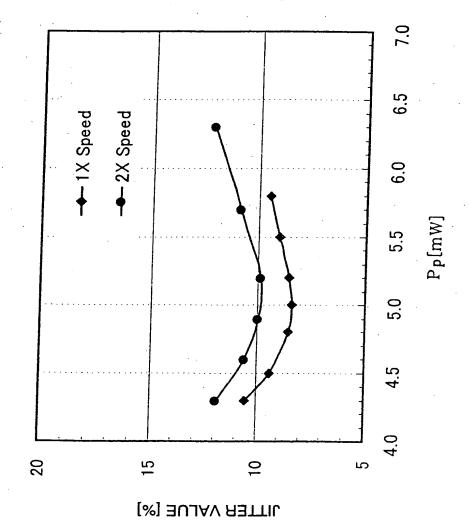


Fig. 13A

26

Fig. 13B

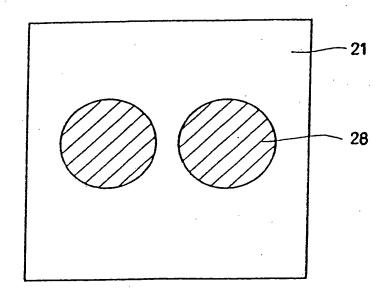


Fig. 13C

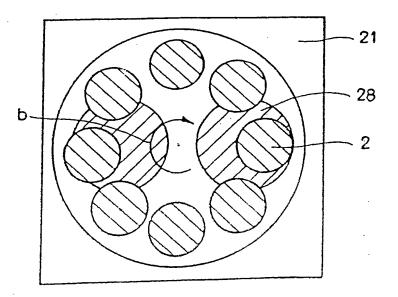


Fig. 14

